Inconel 625 To Learn More Visit velo3d.com info@velo3d.com Campbell, CA 95008 511 Division Street Headquarters European Technology Center Am Technologiezentrum 5 86159 Augsburg, Germany ## **Material & Process Capability** Inconel® 625 is a precipitation-hardenable nickel-based superalloy. It is characterized by having excellent tensile, creep, and rupture properties, particularly at high temperatures. IN625 has good corrosion resistance in various corrosive environments. The Velo3D intelligent additive printing solution uniquely enables companies to build the parts they need without compromising design or quality - resulting in complex parts higher in performance than traditional casting techniques or other additive methods. ## **General Process** In addition to its strength, IN625 is characterized by its superb fatigue, creep, and rupture resistance in extreme environments. IN625 is difficult to shape and machine using subtractive manufacturing techniques. This data sheet specifies the expected mechanical properties and characteristics of this alloy when manufactured on a Velo3D Sapphire® System. All data is based on parts built using Velo3D standard 50 µm layer thickness parameters, using Praxair Tru-Form 625-2, a Velo3D-approved powder. Parts built from IN625 on a Sapphire System can be heat treated like those manufactured by other methods. | Typical Volume Rate ¹ , cc/hr | 60 | |---|---| | Density, g/cc (lbs/cubic inch) | 8.19 (0.296) | | Relative Density, percent | 99.9+ | | Surface Finish ² , S _a , μm (μin) | <15 (590) for angles >25° from horizontal | ## **Mechanical Properties at Room Temperature** | | As Printed | | Solution Anneal ⁴ | | After HIP ⁵ | | |--------------------------------------|------------|------------|------------------------------|------------|------------------------|------------| | Property ³ , MPa (ksi) | Mean -3σ | Mean | Mean -3σ | Mean | Mean -3σ | Mean | | Ultimate Tensile Strength, MPa (ksi) | 868 (126) | 875 (127) | 826 (120) | 833 (121) | 885 (128) | 892 (129) | | Yield (0.2% Offset), MPa (ksi) | 559 (81) | 576 (83.6) | 371 (53.8) | 377 (54.7) | 374 (54.2) | 385 (55.8) | | Elongation At Break, percent | 39.1 | 41.7 | 56.3 | 60.3 | 43.9 | 48.9 | | Hardness, HRB | 94 | 96 | 86 | 88 | 85 | 88 | 1. Geometry-dependent. 2. Depends on orientation & process selected. 3. Mechanical & test samples printed in vertical orientation. 4. Solution Anneal per AMS7000: product solution annealed in accordance with AMS2774 under inert or vacuum atmosphere at 1190 °C± 4°C (2174°F±39°F) for 60 ± 10 minutes; cooled at a rate equal to an air cooling or faster to 650°C (1200°F) and cooled from 650°C (1200°F) at any rate. 5. Hot Isostatic Pressing per AMS7000: HIP under inert atmosphere at 14,500 psi (100 $MPa)\ minimum\ within\ 1149^{\circ}C\ to\ 1204^{\circ}C\ (2100^{\circ}F\ to\ 2200^{\circ}F), held\ at\ selected\ temperature\ within\ \pm 14^{\circ}C\ (\pm 25^{\circ}F)\ for\ 3\ to\ 5\ hours;\ under\ inert\ atmosphere\ in\ autoclave\ to\ 1200^{\circ}F$ below 649 °C (1200 °F). Cool from 649 °C (1200 °F) at any rate. DS-In625.EN.2022-03-01.v1-02.U.USL 0905-18669_A 2022-03-01. Specifications are subject to change without notice. ©2022 Velo3D, Inc. All rights reserved. Velo, Velo3D, Sapphire, and Intelligent Fusion are registered US trademarks and Assure, Flow, and Without Compromise are trademarks of Velo3D, Inc. All other product or company names may be trademarks and/or registered trademarks of their respective owners.