Inconel 718

 To Learn More Visit
 Headquarters

 velo3d.com
 511 Division Street

 info@velo3d.com
 Campbell, CA 95008

HeadquartersEuropean Technology Center511 Division StreetAm Technologiezentrum 5mpbell, CA 9500886159 Augsburg, Germany

Material & Process Capability

Inconel[®] 718 is a precipitation-hardenable nickel-based superalloy known for its superb tensile strength when subjected to extreme pressure and heat. It has rupture strength at temperatures up to 1290°F (980°C), making it ideal for high temperature applications such as gas turbine and power/process industry parts. The material is often used for critical applications in the aerospace, defense, and petrochemical industries.

The Velo3D intelligent additive printing solution uniquely enables companies to build the parts they need without compromising design or quality - resulting in complex parts higher in performance than traditional casting techniques or other additive methods.

General Process

In addition to its strength, Inconel 718 is characterized by its superb fatigue, creep and corrosion resistance in extreme environments subjected to high mechanical loads. However, it is a difficult metal to shape and machine using subtractive manufacturing techniques.

This data sheet specifies the expected mechanical properties and characteristics of this alloy when manufactured on a Velo3D Sapphire® System. All data is based on parts built using Velo3D standard 50 µm layer thickness parameters, using Praxair Tru-Form 718-35, a Velo3D-approved powder. Parts built from IN718 on a Sapphire System can be heat treated like those manufactured by other methods.

Typical Volume Rate ¹ , cc/hour	60 8.19 (0.296) 99.9+		
Density, g/cc (lbs/cubic in)			
Relative Density, percent			
Surface Finish ² , S _a , µm (µin)	<15 (590) for angles >25° from horizontal		

Mechanical Properties at Room Temperature

	As Printed		After Heat Treatment & HIP ⁴	
Property ³	Mean -3ơ	Mean	Mean -3ơ	Mean
Modulus of Elasticity, GPa (msi)	103 (14.9)	110 (15.9)	166 (24.1)	199 (28.9)
Ultimate Tensile Strength, MPa (ksi)	912 (132)	953 (138)	1286 (187)	1320 (191)
Yield (0.2% Offset), MPa (ksi)	512 (74.3)	603 (87.4)	1022 (148)	1063 (154)
Elongation At Break, percent	24.1	30.9	15.3	20.7
Hardness, HRC			42.3	43.4

1. Geometry-dependent. 2. Depends on orientation and process selected. 3. Mechanical & test samples printed in vertical orientation.

4. Heat treatment per ASTM F3055, Hot Isostatic Pressing: ASTM F3055, solution & age per AMS 5662.

DS-In718.EN.2022-02-28.v1-16.U.USL 0905-08095_L 2022-02-28. Specifications are subject to change without notice. ©2022 Velo3D, Inc. All rights reserved. Velo, Velo3D, Sapphire, and Intelligent Fusion are registered US trademarks and Assure, Flow, and Without Compromise are trademarks of Velo3D, Inc. All other product or company names may be trademarks and/or registered trademarks of their respective owners.